skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "King, Scott D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Low‐velocity anomalies in the upper mantle beneath eastern North America, including the Northern Appalachian Anomaly (NAA), the Central Appalachian Anomaly (CAA), and the weaker Southern Coastal Anomaly (SCA), have been characterized by many continent‐scale and regional seismic studies. Different models have been proposed to explain their existence beneath the passive margin of eastern North America, variously invoking the past passage of hot spot tracks, modern upwelling due to edge‐driven convection, or other processes. Depending on the nature and origin of these anomalies, they may influence, and/or be influenced by, the mantle transition zone (MTZ) structure beneath them. Previous receiver function studies have identified an overall thinner MTZ beneath the eastern margin of the US than beneath the continental interior. In this study, we resolve the MTZ geometry beneath these low‐velocity anomalies in unprecedented detail using the scattered wavefield migration technique. We find substantially thinned MTZ beneath the NAA and the CAA, and a moderately thinned MTZ beneath the SCA. In all cases, the thinning is achieved via a minor depression of the 410‐km discontinuity and a major uplift of the 660‐km discontinuity, which suggests the presence of a series of MTZ‐penetrating deep upwellings beneath eastern North America. The upwellings beneath eastern North America and a similar style upwelling beneath Bermuda may initiate from ponded thermally buoyant materials below the MTZ fed by hot return flows from the descending Farallon slab in the deep mantle. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract. Due to the increasing availability of high-performance computing over the past few decades, numerical models have become an important tool for research in geodynamics.Several generations of mantle convection software have been developed, but due to their differing methods and increasing complexity it is important to evaluate the accuracy of each new model generation to ensure published geodynamic research is reliable and reproducible.Here we explore the accuracy of the open-source, finite-element codes ASPECT and CitcomS as a function of mesh spacing using low to moderate-Rayleigh-number models in steady-state thermal convection.ASPECT (Advanced Solver for Problems in Earth's ConvecTion) is a new-generation mantle convection code that enables modeling global mantle convection with realistic parameters and complicated physical processes using adaptive mesh refinement (Kronbichler et al., 2012; Heister et al., 2017).We compare the ASPECT results with calculations from the finite-element code CitcomS (Zhong et al., 2000; Tan et al., 2006; Zhong et al., 2008), which has a long history of use in the geodynamics community.We find that the globally averaged quantities, i.e., root-mean-square (rms) velocity, mean temperature, and Nusselt number at the top and bottom of the shell, agree to within 1 % (and often much better) for calculations with sufficient mesh resolution.We also show that there is excellent agreement of the time evolution of both the rms velocity and the Nusselt numbers between the two codes for otherwise identical parameters.Based on our results, we are optimistic that similar agreement would be achieved for calculations performed at the convective vigor expected for Earth, Venus, and Mars. 
    more » « less
  3. Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars’ deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA’s InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 ± 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 ± 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m 2 . 
    more » « less